
 

Scheduling Realtime Security Aware Tasks in Fog 

Networks 
N.SRINIVASA RAO

 1, KUDUPUDI VANITHA
2
. 

1 Assistant Professor, DEPT OF MCA, SKBR PG COLLEGE , AMALAPURAM, Andhra Pradesh 

Email:-  naagaasrinu@gmail.com 

2PG Student of MCA, SKBR PG COLLEGE , AMALAPURAM, Andhra Pradesh 

Email:- vanitha.k245@gmail.com 

 

 

 
 

 
Abstract—Cloud computing provides computing and storage 

resources over the Internet to provide services for different 

industries. However, delay-sensitive applications like smart 

health and city applications now require computation over large 

amounts of data transferred to centralized cloud data centers 

which leads to drop in performance of such systems. The new 

paradigms of fog and edge computing provide new solutions by 

bringing resources closer to the user and provide low latency and 

energy efficiency compared to cloud services. It is important to 

find optimal placement of services and resources in the three-tier 

IoT to achieve improved cost and resource efficiency, higher 

QoS, and higher level of security and privacy. In this paper, we 

propose a cost-aware genetic-based (CAG) task scheduling 

algorithm for fog-cloud environments, which improves the cost 

efficiency in real-time applications with hard deadlines. iFogSim 

simulator, which is an extended version of CloudSim is used to 

deploy and test the performance of the proposed method in terms 

of latency, network congestion, and cost. The performance results 

show that the proposed algorithm provides better efficiency in 

terms of the cost and throughput compared to Round-Robin and 

Minimum Response Time algorithms. 
 

Keywords—Fog computing, Cloud computing, Task- 

scheduling, Internet of things. 

 
I. INTRODUCTION (HEADING 1) 

For delay-sensitive applications, late responses may lead 
to fault in the system or even system failure. For example, in 
an smart-health application that controls patient’s condition, 
late responses may endanger human life [1]. This becomes 
even   more   critical    when    we    consider    a    large 
amount of data generated by IoT devices. For instance, in 
smart city applications, IoT devices generate about one 

 
million records per second [2]. Considering high density 
of sensors in a number of applications and low accuracy of 
measurement, the possibility of duplicate and error-prone 
data in IoT environments is significant [1]. Therefore, this 
duplicated and error-prone data might increase the size of 
unnecessary data. Transferring huge amount of data and 
requests to the cloud may result in low utilization of network 
resources, high transmission delay, financial costs and 
processing overhead, and network congestion. According to 
Bonomi et al. [3], fog computing as a promising solution is a 
highly virtualized platform that provides processing, storage, 
and networking capacities between IoT devices and cloud 
computing resources and generically, but not exclusively, fog 
is located at the edge of network. 

A common architecture of fog computing consists of 
three main layers: device, fog and the cloud layer. Fog 
computing provides an intermediate layer between device 
and cloud layers, which includes large number of fog nodes 
that have the capability of processing, networking, et. Since 
the fog nodes are supposed to be located near the device layer, 
requests with high requirements on delay can be processed at 
the fog layer and other requests can be sent to the cloud. 
Moreover, since it provides local processing capabilities, it 
can reduce the bandwidth usage and financial cost. Fog layer 
filters, analyzes and preprocesses the received requests and 
data. If the fog layer has enough available resources and can 
execute a task, the task is scheduled in the fog layer. 
Otherwise, if there are not enough resources to execute the 
task, it will be sent to the cloud layer. 

If neither of them (i.e. cloud and fog) can respond at the 
specified time, the task will be rejected. So, it is important to 
find optimal placement of services and resources in the three 
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tire IoT architecture to achieve improved cost and resource 
efficiency, higher QoS, and 

higher level of security privacy. Moreover, the fog layer 
may be organized homogeneously or heterogeneously. In the 
homogeneous structure, the fog sources have the same 
processing, storage, and bandwidth capabilities, but in the 
heterogeneous case, resources have different capabilities. In 
case of heterogeneous fog devices, task scheduling has more 
complexity since resources have different capabilities in terms 
of processing speed, commutations and etc., which leads to 
various combinations (task and resource) [4]. Apart from 
response time and deadline for each task, other parameters, 
such as resource efficiency, energy, and financial cost may 
also need to be considered by task scheduling algorithms. 

Considering several parameters along with the 
heterogeneity of tasks and resources imposes more complexity 
of the decision-making process. With increasing number of 
tasks and resources, possible solutions grow exponentially 
and there is no deterministic polynomial algorithm   to 
solve this problem, and it is considered as a NP-Hard 
problem [4]. To solve this type of problems, evolutionary 
algorithms such as particle swarm optimization (PSO), 
genetic algorithms (GA) bees life algorithm (BLA)   and 
ant colony optimization (ACO) can be applied. Due to 
global optimization and search ability of GA, it is widely 
used to solve task scheduling problems [5], [6], [7]. As 
[8] shows, GA algorithm performs well in task scheduling 
problem. The interplay and cooperation between the fog 
and the cloud has recently received considerable attention. 

In this paper, we consider task scheduling in a cloud-fog 
computing system,   where   fog   nodes   will   collaborate 
with the rented cloud nodes for efficiently   executing 
users’ large-scale offloading applications. The proposed 
algorithm decides whether to execute a task in the fog 
layer or send it to the cloud layer. The main contributions 
of this work are as follow: 

 Reduce the cost of executing tasks in the fog/cloud 
layer, which includes the cost of bandwidth used 
(for sending/receiving requests and responses) and the 
cost of using computational resources. 

 Increasing the success rate of responding to tasks 
within deadlines. 

The rest of the paper is organized as follows: related 
studies are reviewed in Section II. A comprehensive 
description of proposed cost aware scheduling algorithm is 
provided in III. Simulation settings are expressed in Section 
IV. The results of our simulation studies are presented and 
discussed in Section   V.   The   paper   ends   with 
conclusions drawn from the results in Section VI. 

 
II. BACKGROUND AND RELATED WORKS 

Task scheduling problem in cloud computing has been 
studied for several years. Recently, there are several studies, 
where new proposals are provided considering fog computing. 
In this section, we provide a review of scheduling models, 
used metrics and related studies. 

A. Background ting a Template (Heading 2) 

In a common task scheduling problem, a set of tasks 
should be scheduled on distributed nodes with one or more 
objectives. In this paper, the term “task” is used to indicate an 
atomic unit of processing, while the term “job” refers to a set of 
tasks. In the scheduling problem, each task has main 
parameters including resource requirements, size of task, ready 
time and deadline. Deadline is the time the ti should be 
completed and ready time is the time that ti is ready for 
execution [9]. Considering dependency in a task set, two tasks 
ti and tj are dependent if execution of task tj should be started 
after completion of task ti. In contrast, if tasks have no 
dependency relation with each other, tasks are considered 
independent and can be scheduled independently and the ready 
time for all tasks are defined based on their entrance time. This 
type of tasks is also called Bag-of-Tasks (BoT) [10]. 

Task scheduling approaches are motivated by one or 
more objectives and it is essential to evaluate different 
approaches to estimate their effectiveness. In this regard, key 
metrics that can be considered in scheduling approaches in 
distributed systems such as cloud and fog environment, are as 
follows [11], [12]: 

 Makespan: total time taken to process a set of tasks 
for its complete execution. However in dynamic task 
scheduling, makespan is unusable, because the task 
stream is continually arriving and it is impossible to 
define the completion time for the set of tasks. 

 Efficiency: proportion of execution time to total 
makespan. 

 Throughput: total number of tasks completed 
successfully in a certain time period. 

 Waiting time: time after submission and before the 
execution, also it includes the time that a task spends 
to obtain other resources or waits for some events. 

 Execution time: time that a task is running and utilizes 
its resources. 

 Response time: it refers to the time interval between 
submission and completion time for each task. In 
another word, it can be calculated as the summation 
of waiting time and execution time. 

 Cost: total payment for usage of resources, and 
additional cost such as energy cost. 

 
B. Related Works 

Task scheduling in distributed computing systems, such 
as cloud and fog computing has been addressed in many 
different studies. Heuristics and meta-heuristics algorithms 
GA, PSO, BLA, and ACO can be used for scheduling and 
resource allocation problems while satisfying the requirements 
(i.e. lower makespan, higher efficiency in terms of energy, 
cost, utilization, etc.). In the following, some related studies are 
reviewed. 

In a work by Nikoui et al. [13], the authors used GA 
algorithm to minimize the energy consumption of scheduling in 
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cloud computing systems. This paper assumes that central 
cloud broker uses GA to schedule a number of tasks on a set of 
virtual machines (VM) with the objective of optimizing energy 
consumption and the execution time. Results show that the 
proposed approach decreased the energy consumption in 
comparison with RR algorithm. 

Another GA-based scheduling algorithm was proposed 
by Binh et al. [14] to decrease makespan and financial 
cost in fog networks. The authors presented a central task 
scheduling model, using a GA-based algorithm. In this 
paper, scheduler node is responsible for assigning arrival 
tasks to resources (cloud or fog nodes), considering two 
metrics: makespan and financial cost (cost of processing, 
memory and bandwidth). Moreover, weighting coefficients 
are included to provide more flexibility and trade-off between 
requirements. For evaluation, 10 heterogeneous fog nodes and 
5 cloud nodes are simulated in iFogSim [15]. Based on 
conducted experiments, the proposed approach performs better 
in terms of makespan and financial cost compared to BLA. 
However, time-sensitivity of tasks and deadline are not 
included in the proposed approach. 

Apart from GA-based algorithms, Bees life algorithms have 
been also applied to solve scheduling problems. For instance, 
in [16], BLA is applied to a central scheduler in heterogeneous 
fog computing systems, while considering time of execution 
and allocated memory. Job scheduler breaks down the received 
jobs to a number of tasks and they are assigned to worker fog 
nodes. Completed tasks and outcomes are combined together in 
the central scheduler, and final results are sent to end-devices. 
Experiments showed better results in terms of memory and 
time of execution compared to PSO and GA. The authors 
assumed fog nodes are heterogeneous, however, the cloud 
nodes are not included in the problem definition. 

Some studies have selected hybrid approaches. For 
example, in [17], a combination of PSO and ACO algorithms 
has been used to schedule tasks in smart production line. 
Using this approach helps to compensate low accuracy 
characteristic of PSO, and slow search speed of ACO. Energy 
consumption and time (execution and transmission time) are 
included to increase efficiency of smart production line. 
Evaluations was conducted thorough simulation including 300 
tasks and 10 fog nodes. Results show that the proposed 
algorithm performs better in terms of energy, time, and success 
rate. Similar to [16], the cloud nodes are not included in the 
problem definition. In addition, waiting time is not also 
included in response time calculation. 

A multi-level architecture that consists of fog and cloud 
nodes is considered in [18]. This paper presents an ACO-based 
approach, called DATS-ACO, for heterogeneous fog 
computing systems to increase the profit of service providers. 
The authors considered task scheduling as a multi-dimensional 
0-1 knapsack problem, where incoming tasks are assigned to a 
task queue to be scheduled; and the scheduler makes decision 
to execute tasks on suitable IoT devices or locally, or even 
sends them to cloud servers. Results show DATS-ACO has 
better results in terms of number of executed tasks and profit 
compared to First-Come-First-Served (FCFS) and Min-Min 
algorithms. However, since simulation setup includes only one 

datacenter and one fog node, collaboration between multiple 
fog nodes is not addressed. 

Another cost-aware scheduling algorithm based on a multi-
layer architecture is presented in [19] for time- constrained   
workflows.   The proposed   algorithm consists of two main 
phases. In the first phase, PSO generates solutions based on 
problem objectives (financial cost, computation and 
communication time). The second phase resolves conflicting 
tasks (conflicting tasks refers to set of tasks that are assigned to 
a single resource and have overlap based on their start to finish 
times), the authors applied Min-Min algorithm to calculate 
earliest start and finish times of conflicting tasks. For 
comparison, the authors compared the proposed approach with 
two strategies, the first one only uses the fog nodes and the 
second one only uses cloud layer resources. Experimental 
results showed that presented approach performs better in 
terms of execution time and cost. However, this approach does 
not consider waiting time, which has a critical impact on 
response time. 

 

Fig. 1. Fog-cloud based task scheduler model. 

 

As it was mentioned above, cloud computing scheduling 
and resource allocation approaches present good ideas, but 
they do not consider the load balancing between fog and 
cloud computing, so they are not applicable for a scenario 
where both cloud and fog architectures collaborate. Other 
approaches that are presented for fog computing do not 
present a cost-aware task scheduling approach for time- 
constrained tasks in a fog-cloud computing ecosystem that 
includes heterogeneous and collaborative resources. Also, a 
comprehensive and realistic performance evaluation, including 
different scenarios and configurations, was missing in the 
literature. 

 
III. COST-AWARE TASK SCHEDULING 

This section provides a description of the proposed 
approach that focuses on task scheduling in fog-cloud 
computing systems to increase the efficiency, in terms of 
response time and financial cost of processing. 

Task scheduling is a decision-making process that is 
used on a regular basis in many manufacturing and services 
industries [20] and deals with the allocation of resources to 
tasks over a defined period of time in order to optimize one or 
more objectives. In distributed systems, such as cloud and fog 
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computing, there are different types of resources, and assigning 
resources to each task should be considered. 

In this paper, to provide a trade-off between cost of 
processing and meeting the deadlines of time-constrained tasks, 
we present a genetic-based algorithm that is run in a central 
scheduling node. The system model of scheduling is presented 
in Figure 2. At the first step, task request is forwarded to 
MasterFogNode, which is in charge of running scheduling 
algorithm. The scheduler estimates the completion time 
of tasks with respect to networking and processing capability 
of available resources and requirements of tasks. According to 
the output of the estimation and scheduling algorithm, if a/the 
task cannot be completed on time, it will be rejected, otherwise 
it will be sent to corresponding resources (i.e. worker fog nodes 
or cloud nodes). Each node should process receiving tasks and 
send results back to MasterFogNode. The corresponding 
responses will be sent to the requester. 

 

 
Fig. 2. System model of scheduling. 

 

To provide an optimal solution, The Master Fog node uses 
Cost-Aware Genetic algorithm (CAG) to assign task set 
T={t1,t2,…,tn} to fog and cloud nodes D={d1,d2,d3,..,dm}. 
Pseudo code of CAG is presented in Figure 3. A List of 
incoming tasks and available processing nodes are used as the 
input for this algorithm. Each task has main characteristics 
such as entrance time, number of instructions, upload and 
result data size, and deadline. Also, tasks are assumed as BoT. 
Since BoT applications consist of independent tasks with no 
communication [10] and there is no dependency between 
different tasks, the ready time for all tasks are defined based on 
their entrance time and they can be scheduled independently. 

Similar to a task, each processing node has characteristics, 
such as processing rate, network and storage capabilities, 
and cost of processing. According to the CAG Algorithm, the 
first step is to define the representation method (chromosome 
encoding). Each possible solution in GA is represented by a 
chromosome (individual). To represent chromosomes, we use 
integer coding that includes the resource identifications. A set 
of chromosome in a generation is called a population [21]. 

In this work, the first generation of chromosome (initial 
population) is generated randomly. Another important step is 
definition of fitness function, which is used to measure the 

fitness of solutions by taking a candidate chromosome as input 
and producing how suitable the solution is with respect to the 
objectives of problem. Therefore, fitness function defines 
which chromosomes will survive or reproduced to next 
generations; and search process based on fitness function tries 
to provide the most suitable individuals. With the objectives of 
decreasing cost and increasing the success rate, we define the 
fitness function in (1), where the Cost shows total financial cost 
that is spent for execution of tasks, and SuccessRate shows the 
fraction of successfully completed tasks. 

 

 
Similar to a task, each processing node has characteristics, 

such as processing rate, network and storage capabilities, 
and cost of processing. 

According to CAG Algorithm which is shown in Figure 3, 
the first step is to define the representation method 
(chromosome encoding). Each possible solution in GA is 
represented by a chromosome (individual). To represent 
chromosomes, we use integer coding that includes the resource 
identifications. A set of chromosome in a generation is called a 
population [21]. 

 

 

Fig. 3. Pseudo Code of CAG Algorithm 

 

In this work, the first generation of chromosome (initial 
population) is generated randomly. Another important step 
is definition of fitness function, which is used to measure 
the fitness of solutions by taking a candidate chromosome as 
input and producing how suitable the solution is with respect to 
the objectives of problem. Therefore, fitness function defines 
which chromosomes will survive or reproduced to next 
generations; and search process based on fitness function tries 
to provide the most suitable individuals. 

With the objectives of decreasing cost and increasing the 
success rate, we define the fitness function in (1), where the 
Cost shows total financial cost that is spent for execution of 
tasks, and SuccessRate shows the fraction of successfully 
completed tasks. Where TL is the latency and Tp is the 
processing time and is calculated as shown in (3). In this 
equation, I(ti) indicates the size of task (number of instructions) 
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and di shows the index of computing node. The waiting time of 
each task to get the processor (TW) can be calculated using (4). 
In this equation, ti and tj are executed on the same nodes and tj 

is executed before ti. For simplicity, we assume that each of the 
nodes has a single processor. 

 

To calculate the latency (TL) for task ti, propagation 
time PropagationTime   and   transmission   time   TN(ti) 
should be included (5). According to [22], propagation 
time that is required for a bit to travel from the source to 
the destination, can be calculated by dividing the distance 
between two points to the speed of propagation. Also, data 
transmission time TN(ti) is calculated by (6). Where Si(ti) and 
So(ti) show upload data size and output data size of the task ti 

and Bd shows the bandwidth between the two points (i.e. 
master node and destination worker node). Therefore, data 
transmission time is dependent to data size and bandwidth. 

 

The cost of processing is calculated in (7), in the Cp 

and CB show the cost of processing per unit of time in 
destination node and cost of network bandwidth . 

 

 
IV. SIMULATION SETTINGS 

The iFogSim [15] simulator, which is an extended version 
of Cloudsim [23] was found to be suitable, as it is specially 
designed for resource management in fog environment, and 
parameters, such as latency, network congestion, energy 
consumption and cost have been considered. We extended 
iFogSim by adding some classes for the genetic algorithm and 
new scheduling approaches. 

The interval between incoming tasks are generated using 
exponential distribution with   rate of 0.02.   Specifications 
of resources and cost are configured based on [14]. Also, 
considering QoS of different IoT industry application [24], 
deadline of tasks are defined in range of 50 to 250 
milliseconds. Size of tasks are also defined based on [14] 
and generated randomly. The Network latency values are 
configured based on [25]. The characteristics of workload, 
resources and parameters that are used in the genetic 
algorithm are mentioned in Table I. 

A. Simulation Scenario 

To evaluate the performance of the proposed algorithm 
in case of increasing the number of fog nodes in simulation 
experiments, the number of tasks and cloud nodes are kept 
constant (1000 tasks, 5 cloud nodes), while number of 
heterogeneous worker fog nodes varies between 2 and 20. 
The characteristics of the workload and nodes are kept 
constant in all simulations. Also, to achieve a normal 
value, each of the experiments ran 40 times and the 
average values are provided. Round-Robin (RR) is a simple but 
well-known algorithm that is one of the most common 
algorithms for resource allocation [26]. RR has been used by 
other papers in the literature for comparison [27], [28], [29], 
[30]. In addition to RR, Minimum Response Time (Minimum 
Completion Time) [31], which assigns each tasks to the 
resource with minimum completion time is used for 
comparison. In addition, to ensure system stability over 
time, simulations are repeated with different simulation 
duration. 

 
TABLE I. CONFIGURATION PARAMETERS 

 

Parameter Value 

Size of tasks (Million Instructions) [1-100] 

I/O data of a tasks (KB) [1-10] 

Deadlines of tasks (ms) [50-250] 

Processing rate fog nodes (MIPS) [500-2000] 

Processing rate cloud nodes (MIPS) [3000-10000] 

Bandwidth in fog environment (Mbps) 20 

Bandwidth in cloud environment (Mbps) 100 

Network latency from fog to cloud layers (ms) 100 

Network latency from device to fog layers (ms) 10 

Network latency in fog layer (ms) [5-10] 
Processing cost at cloud per time unit [1- 2] 

Processing cost at fog per time unit [0.2-0.5] 

Communication cost at fog per data unit [0.01-0.02] 

Communication cost at cloud per data unit [0.05-0.01] 

Crossover probability 0.09 

Mutation probability 0.03 

Population size 50 

B. Evaluation metrics 

To evaluate the proposed approach, we consider the 
following metrics: 

 Success rate: the fraction of tasks that are completed 
within deadline. This metric is calculated by dividing 
the number of successfully completed tasks to total 
number of tasks. 

 Cost: the financial cost that is spent for execution of 
tasks by (7). 

 Cost per Instruction: the financial cost that is spent for 
a single instruction. This metric is calculated by 
dividing the total financial cost to total number of 
instructions for successful tasks. 

 
V. RESULTS AND DISCUSSIONS 

In this section, we investigate the performance of CAG 
algorithm in terms of Cost and SuccessRate and 
CostPerInstruction. 
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As shown in Figure 4, the experimental evaluation 
shows that the CAG algorithm has higher success rate (0.591-
0.808) than the RR (0.415-0.701) and Minimum Response 
Time algorithm   (0.479-0.709).   Experiments show that 
when there are 2 fog nodes, about 591, 479 and 415 
tasks are completed successfully in CAG,   RR and 
Minimum Response Time algorithms, respectively. 

As it was expected, the success rate improves with the 
increasing number of computing resources. Since, increasing 
number of computational resources at the fog layer (20 fog 
nodes), 808, 709 and 688 tasks are completed in CAG, RR and 
Minimum Response Time algorithm respectively. 

 

Fig. 4. Success Rate. 

 

 

Fig. 5. Total Cost of Processing. 

 

The underlying reasons are (i) increasing the   number 
of computational resources reduces the waiting time for tasks 
and response time will be decreased. So, there is an increment 

in number of tasks that can be completed within deadline; (ii) 
another reason is related to lower latency of added resources 
(fog nodes) because they are located in the fog layer and 
response time is reduced due to shorter latency. However, RR 
and Minimum Response Time algorithms does not consider a 
global perspective of problem and assign tasks to resources one 

by one. Therefore, the success rate in RR and Minimum 
Response Time algorithms are lower than CAG algorithm. 

 

Fig. 6. Cost per Instruction. 

 

Another metric that is included in evaluations is the 
Cost, which is depicted in Figure 5. Evaluation shows 
that RR has higher cost than the others. Also, Minimum 
Response Time compared to CAG has higher   cost   in 
most cases. For instance, in case of having 14 fog nodes, 
Minimum Response Time algorithm has the lower cost 
(9.8712) compared to CAG (9.8713). One reason is related to 
number of rejected tasks (i,e. if task can not be completed in 
deadline, it will be rejected by the scheduler). In addition, 
instructions     that     are     belonged     to     missed     tasks 
has a negative impact on cost. Considering these issues, 
CostperInstruction is included in our analysis. The measured 
values in experiments is presented in Figure 6. 

This value is in range of (3:4 × 10-3
 - 6:9 × 10-3) for 

RR, (2.2 × 10-3
 -3:5 × 10-3) for CAG algorithm and 

(2:4 × 10-3
 - 4:3 × 10-3) for Minimum Response Time 

algorithm. It can be concluded that a tradeoff between cost 
and success rate can be achieved using CAG algorithm. 

 
VI. CONCLUSIONS 

Fog computing paradigm made   a   significant   impact 
on business models and the interplay and cooperation 
between the fog and the cloud has recently received 
considerable attention. Efficient task scheduling is a critical 
challenge for a cloud-fog ecosystem. In this paper, we 
consider task scheduling in a cloud-fog computing system, 
where fog nodes will collaborate with the rented cloud 
nodes for efficiently executing users’ large-scale offloading 
applications. This work proposes a genetic-based algorithm 
that is called CAG, considering the trade-off between 
throughput   and   cost   for    hard    real-time    applications. 
To evaluate the performance of the proposed approach, we 
made some modifications in iFogSim simulator and 
evaluated CAG in different cases to investigate the impact 
of changes on the performance. Results show that CAG 
performs better than RR and Minimum Response Time 
algorithms in terms of financial cost and success rate. For 
the future works, we intend to evaluate the performance of 
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proposed approach under realistic workloads and applications. 
Another potential topic for future study is workflow 
scheduling and considering dependent tasks in such an 
environment. 
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